电离层的发现,不仅使人们对无线电波传播的各种机制有了更深入的认识,并且对地球大气层的结构及形成机制有了更清晰的了解。

    1899年尼古拉·特斯拉试图使用电离层进行远距无线能量传送。他在地面和电离层所谓的科诺尔里亥维赛层之间发送极低频率波。基于他的试验的基础上他进行了数学计算,他对这个区域的共振频率的计算与今天的试验结果相差不到15%。1950年代学者确认这个共振频率为6.8hz。

    1901年12月12日古列尔莫·马可尼首次收获跨大西洋的信号传送。马可尼使用了一个通过风筝竖起的400英尺长的天线。在英国的发送站使用的频率约为500khz,其功率为到那时为止所有发送机的100倍。收到的信号为摩尔斯电码中的s(三点)。要跨越大西洋,这个信号必须两次被电离层反射。继续理论计算和今天的试验有人怀疑马可尼的结果,但是1902年马可尼无疑地达到了跨大西洋传播。

    1902年奥利弗·黑维塞提出了电离层中的科诺尔里亥维赛层的理论。这个理论说明电波可以绕过地球的球面。这个理论加上普朗克的黑体辐射理论可能阻碍了射电天文学的发展。事实上一直到1932年人类才探测到来自天体的无线电波。1902年亚瑟·肯乃利(arthurkennelly)还发现了电离层的一些电波电子特性。

    1912年蓝色星球m国国会通过1912年广播法案,下令业余电台只能在1.5mhz以上工作。当时政府认为这以上的频率无用。致使1923年使用电离层传播高频无线电波的发现。

    1947年爱德华·阿普尔顿因于1927年证实电离层的存在获得诺贝尔物理学奖。莫里斯·威尔克斯和约翰·拉克利夫研究了极长波长电波在电离层的传播。维塔利·金兹堡提出了电磁波在电离层这样的等离子体内的传播的理论。

    1962年加拿大卫星alouette1升空,其目的是研究电离层。其成功驱使了1965年alouette2卫星的发射和1969年isis1号和1971年isis2号的发射。这些卫星全部是用来研究电离层的。

    大气的电离主要是太阳辐射中紫外线和x射线所致。此外,太阳高能带电粒子和银河宇宙射线也起相当重要的作用。地球高层大气的分子和原子,在太阳紫外线、x射线和高能粒子的作用下电离,产生自由电子和正、负离子,形成等离子体区域即电离层。电离层从宏观上呈现中性。电离层的变化,主要表现为电子密度随时间的变化。而电子密度达到平衡的条件,主要取决于电子生成率和电子消失率。

    电子生成率是指中性气体吸收太阳辐射能发生电离,在单位体积内每秒钟所产生的电子数。电子消失率是指当不考虑电子的漂移运动时,单位体积内每秒钟所消失的电子数。带电粒子通过碰撞等过程又产生复合,使电子和离子的数目减少;带电粒子的漂移和其他运动也可使电子或离子密度发生变化。

    电离层形态是电离层中电子密度等基本参量的空间结构(高度和经纬度分布)及其随时间(昼夜、季节和太阳活动周期)变化的情况。电离层可从低到高依次分为d层、e层和f层等,其中f层还可分为f1层和f2层。e层和f1层中,电子迁移作用较小,具有查普曼层的主要特性。层的临界频率П(其平方正比于峰值电子密度)与太阳天顶角e近似地满足由简单层理论所导出的关系式П=ɑcose(兆赫),式中ɑ和b为常数。这个关系式反映了电离层电子密度随时间和地区变化的基本趋势。在较高的f2层,电离输运起着重要作用;在地球磁极,存在着外来带电粒子的轰击,形态更为复杂。d层和f1层的峰形一般并不很凸出。

    4.2d:层离地面约50~90公里。白天,峰值密度nmd和相应高度hmd的典型值分别为10厘米和85公里左右。无线电波中的短波在该层受到较大的吸收。太阳活动最高年的吸收几乎是最低年的两倍。一年之中,nmd的夏季值大于冬季值,但在中纬地区,冬季有时会出现异常吸收。夜间,电离基本消失。

    4.3e层:离地面约90~130公里。白天,峰值密度nme及其相应高度hme的典型值分别为10厘米和115公里。nme的昼夜、季节和太阳活动周期三种变化,大致符合简单层理论公式,分别于中午、夏季和活动高年达到最大值;这时,公式中常量ɑ0.9(1801.44r),b0.25,r为12个月内太阳黑子数流动平均值。夜间,nme下降,hme上升;nme5x10厘米,hme的变化幅度一般不超过20公里。

    4.4f层:离地面约130公里以上,可再分为f1和f2层。1f1层(离地面约130~210公里):白天,峰值密度nmf1及其相应高度hmf1的典型值分别为2x10厘米和180公里。f1层峰形夜间消失,中纬度f1层只出现于夏季,在太阳活动高年和电离层暴时,f1层变得明显。nmf1和hmf1的变化与e层类似,大致符合简单层的理论公式,这时ɑ4.30.01r,b0.2。

    2f2层(离地面约210公里以上):反射无线电信号或影响无线电波传播条件的主要区域,其上边界与磁层相接。白天,峰值密度nmf2及其相应高度hmf2的典型值分别为10厘米;夜间,nmf2一般仍达5x10厘米。在任何季节,nmf2的正午值都与太阳活动性正相关。hmf2与太阳活动性一般也有正相关关系,除赤道地区外,夜间值高于白天值。在f2层,地球磁场大气各风系、扩散和其他动力学因素起着重要的作用,其形态变化不能用查普曼的简单层理论来描述,于是f2层比起e层和f1层便有种种“异常”。所谓日变化异常是指f2层电子密度的最大值不是出现在正午(通常是在本地时间13时至15时),同时nmf2还具有半日变化分量,其最大值分别在本地时间上午10~11时和下午22~23时。季节异常是指f2层正午的电子密度在冬季要比夏季高。赤道异常是指f2层电子密度并不在赤道上空最大,它明显地受地磁场控制,其地理变化呈“双峰”现象,在磁纬±20度附近达到最大值。在高纬度地区,可观测到许多与带电粒子沉降有关的异常现象。其中,最为重要的是f层“槽”,这是地球背阳面上从极光圈开始朝向低纬宽约5~10度的低电子密度的带区。

    峰上固定高度的电子密度和电离层电子总含量的时间变化,与nmf2有类似之处。图2为电离层各层的峰值密度nm和相应高度hm在中纬度地区的平均昼夜变化。

    除上述各均匀厚层外,电离层还存在着两种较常见的不均匀结构:es层即偶发e层(见es层电波传播)和扩展f层(见电离层不均匀体)。

    太阳辐射使部分中性分子和原子电离为自由电子和正离子,它在大气中穿透越深,强度(产生电离的能力)越趋减弱,而大气密度逐渐增加,于是,在某一高度上出现电离的极大值。大气不同成分,如分子氧、原子氧和分子氮等,在空间的分布是不均匀的。它们为不同波段的辐射所电离,形成各自的极值区,从而导致电离层的层状结构。电离层在垂直方向上呈分层结构,一般划分为d层、e层和f层,f层又分为f1层和f2层。

章节目录

大道无垠之奇偶平行空间所有内容均来自互联网,御宅屋只为原作者古月木斤的小说进行宣传。欢迎各位书友支持古月木斤并收藏大道无垠之奇偶平行空间最新章节